Thursday, May 22, 2025

Class 8 Readmore Maths Solution | Chapter 3.3 SIMPLIFICATION OF NUMBERS WITH SCIENTIFIC NOTATION

Class 8 Readmore Maths Solution | Chapter 3.3. SIMPLIFICATION OF NUMBERS WITH SCIENTIFIC NOTATION

3.3. SIMPLIFICATION OF NUMBERS WITH SCIENTIFIC NOTATION

SOLVE

1. Simplify and write the result in scientific notation:

(a) (4 × 10⁵) + (5 × 10⁴)

Solution

(4 × 10⁵) + (5 × 10⁴)

= (4 × 100,000) + (5 × 10,000)

= 400,000 + 50,000

= 450,000

= 4.5 × 10⁵

(b) (9.8 × 10⁵) + (1.5 × 10⁶)

Solution

(9.8 × 10⁵) + (1.5 × 10⁶)

= (9.8 × 100,000) + (1.5 × 1,000,000)

= 980,000 + 1,500,000

= 2,480,000

= 2.48 × 10⁶

(c) (4.5 × 10⁴) + (1.2 × 10⁴)

Solution

(4.5 × 10⁴) + (1.2 × 10⁴)

= (4.5 × 10,000) + (1.2 × 10,000)

= 45,000 + 12,000

= 57,000

= 5.7 × 10⁴

(d) (7.8 × 10³) + (2.1 × 10⁴)

Solution

(7.8 × 10³) + (2.1 × 10⁴)

= (7.8 × 1,000) + (2.1 × 10,000)

= 7,800 + 21,000

= 28,800

= 2.88 × 10⁴

(e) (2.3 × 10⁻³) + (5.6 × 10⁻⁴)

Solution

(2.3 × 10⁻³) + (5.6 × 10⁻⁴)

= 0.0023 + 0.00056

= 0.00286

= 2.86 × 10⁻³

(f) (9 × 10⁻⁶) + (1.2 × 10⁻⁶)

Solution

(9 × 10⁻⁶) + (1.2 × 10⁻⁶)

= 0.000009 + 0.0000012

= 0.0000102

= 1.02 × 10⁻⁵

(g) (1.2 × 10⁻³) + (3.4 × 10⁻⁴)

Solution

(1.2 × 10⁻³) + (3.4 × 10⁻⁴)

= 0.0012 + 0.00034

= 0.00154

= 1.54 × 10⁻³

(h) (1.2 × 10⁻⁴) + (3.4 × 10⁻⁵)

Solution

(1.2 × 10⁻⁴) + (3.4 × 10⁻⁵)

= 0.00012 + 0.000034

= 0.000154

= 1.54 × 10⁻⁴

(i) (2.4 × 10⁻⁶) + (3.7 × 10⁻⁸)

Solution

(2.4 × 10⁻⁶) + (3.7 × 10⁻⁸)

= 0.0000024 + 0.000000037

= 0.000002437

= 2.437 × 10⁻⁶

2. Simplify and write the result in scientific notation:

(a) (8.9 × 10⁷) - (2.1 × 10⁶)

Solution

(8.9 × 10⁷) - (2.1 × 10⁶)

= (8.9 × 10,000,000) - (2.1 × 1,000,000)

= 89,000,000 - 2,100,000

= 86,900,000

= 8.69 × 10⁷

(b) (4.6 × 10⁴) - (8.9 × 10³)

Solution

(4.6 × 10⁴) - (8.9 × 10³)

= (4.6 × 10,000) - (8.9 × 1,000)

= 46,000 - 8,900

= 37,100

= 3.71 × 10⁴

(c) (7 × 10²) - (2.5 × 10¹)

Solution

(7 × 10²) - (2.5 × 10¹)

= (7 × 100) - (2.5 × 10)

= 700 - 25

= 675

= 6.75 × 10²

(d) (6.7 × 10³) - (5.4 × 10²)

Solution

(6.7 × 10³) - (5.4 × 10²)

= (6.7 × 1,000) - (5.4 × 100)

= 6,700 - 540

= 6,160

= 6.16 × 10³

(e) (6.7 × 10⁵) - (1.2 × 10⁴)

Solution

(6.7 × 10⁵) - (1.2 × 10⁴)

= (6.7 × 100,000) - (1.2 × 10,000)

= 670,000 - 12,000

= 658,000

= 6.58 × 10⁵

(f) (2.5 × 10⁻⁶) - (6.4 × 10⁻⁷)

Solution

(2.5 × 10⁻⁶) - (6.4 × 10⁻⁷)

= 0.0000025 - 0.00000064

= 0.00000186

= 1.86 × 10⁻⁶

(g) (9 × 10⁻⁵) - (3 × 10⁻⁶)

Solution

(9 × 10⁻⁵) - (3 × 10⁻⁶)

= 0.00009 - 0.000003

= 0.000087

= 8.7 × 10⁻⁵

(h) (2.3 × 10⁻²) - (5.6 × 10⁻³)

Solution

(2.3 × 10⁻²) - (5.6 × 10⁻³)

= 0.023 - 0.0056

= 0.0174

= 1.74 × 10⁻²

(i) (6.6 × 10⁻⁵) - (9.31 × 10⁻⁹)

Solution

(6.6 × 10⁻⁵) - (9.31 × 10⁻⁹)

= 0.000066 - 0.00000000931

= 0.00006599069

= 6.599069 × 10⁻⁵

3. Simplify and write the result in scientific notation:

(a) (6.2 × 10³) × (2.3 × 10²)

Solution

(6.2 × 10³) × (2.3 × 10²)

= (6.2 × 2.3) × (10³ × 10²)

= 14.26 × 10^{3+2}

= 14.26 × 10⁵

= 1.426 × 10⁶

(b) (8.9 × 10⁻⁵) × (5 × 10⁷)

Solution

(8.9 × 10⁻⁵) × (5 × 10⁷)

= (8.9 × 5) × (10⁻⁵ × 10⁷)

= 44.5 × 10^{-5+7}

= 44.5 × 10²

= 4.45 × 10³

(c) (1.2 × 10³) × (3.4 × 10⁵)

Solution

(1.2 × 10³) × (3.4 × 10⁵)

= (1.2 × 3.4) × (10³ × 10⁵)

= 4.08 × 10^{3+5}

= 4.08 × 10⁸

(d) (5.4 × 10⁴) × (2.1 × 10⁴)

Solution

(5.4 × 10⁴) × (2.1 × 10⁴)

= (5.4 × 2.1) × (10⁴ × 10⁴)

= 11.34 × 10^{4+4}

= 11.34 × 10⁸

= 1.134 × 10⁹

(e) (2.4 × 10⁵) × (6.8 × 10⁻³)

Solution

(2.4 × 10⁵) × (6.8 × 10⁻³)

= (2.4 × 6.8) × (10⁵ × 10⁻³)

= 16.32 × 10^{5-3}

= 16.32 × 10²

= 1.632 × 10³

(f) (8 × 10⁶) × (1.2 × 10⁻²)

Solution

(8 × 10⁶) × (1.2 × 10⁻²)

= (8 × 1.2) × (10⁶ × 10⁻²)

= 9.6 × 10^{6-2}

= 9.6 × 10⁴

(g) (5 × 10⁻⁴) × (2.3 × 10³)

Solution

(5 × 10⁻⁴) × (2.3 × 10³)

= (5 × 2.3) × (10⁻⁴ × 10³)

= 11.5 × 10^{-4+3}

= 11.5 × 10⁻¹

= 1.15 × 10⁰

(h) (5 × 10⁻⁴) × (3.2 × 10⁻³)

Solution

(5 × 10⁻⁴) × (3.2 × 10⁻³)

= (5 × 3.2) × (10⁻⁴ × 10⁻³)

= 16 × 10^{-4-3}

= 16 × 10⁻⁷

= 1.6 × 10⁻⁶

(i) (2.5 × 10⁷) × (1.6 × 10⁻⁴)

Solution

(2.5 × 10⁷) × (1.6 × 10⁻⁴)

= (2.5 × 1.6) × (10⁷ × 10⁻⁴)

= 4 × 10^{7-4}

= 4 × 10³

4. Simplify and write the result in scientific notation:

(a) (1.2 × 10⁴) ÷ (6 × 10²)

Solution

(1.2 × 10⁴) ÷ (6 × 10²)

= \(\frac{(1.2 × 10⁴)}{(6 × 10²)}\)

= \(\frac{1.2}{6} × 10^{4-2}\)

= \(0.2 × 10²\)

= \(2 × 10^{2-1}\)

= \(2 × 10¹\)

(b) (4.5 × 10⁷) ÷ (1.5 × 10³)

Solution

(4.5 × 10⁷) ÷ (1.5 × 10³)

= \(\frac{(4.5 × 10⁷)}{(1.5 × 10³)}\)

= \(\frac{4.5}{1.5} × 10^{7-3}\)

= \(3 × 10⁴\)

(c) (6.7 × 10⁵) ÷ (2 × 10²)

Solution

(6.7 × 10⁵) ÷ (2 × 10²)

= \(\frac{(6.7 × 10⁵)}{(2 × 10²)}\)

= \(\frac{6.7}{2} × 10^{5-2}\)

= \(3.35 × 10³\)

(d) (3 × 10⁶) ÷ (2 × 10³)

Solution

(3 × 10⁶) ÷ (2 × 10³)

= \(\frac{(3 × 10⁶)}{(2 × 10³)}\)

= \(\frac{3}{2} × 10^{6-3}\)

= \(1.5 × 10³\)

(e) (1.2 × 10⁴) ÷ (2.4 × 10²)

Solution

(1.2 × 10⁴) ÷ (2.4 × 10²)

= \(\frac{(1.2 × 10⁴)}{(2.4 × 10²)}\)

= \(\frac{1.2}{2.4} × 10^{4-2}\)

= \(0.5 × 10²\)

= \(5 × 10^{2-1}\)

= \(5 × 10¹\)

(f) (5.6 × 10³) ÷ (2 × 10²)

Solution

(5.6 × 10³) ÷ (2 × 10²)

= \(\frac{(5.6 × 10³)}{(2 × 10²)}\)

= \(\frac{5.6}{2} × 10^{3-2}\)

= \(2.8 × 10¹\)

(g) (3.5 × 10⁻²) ÷ (7 × 10⁻³)

Solution

(3.5 × 10⁻²) ÷ (7 × 10⁻³)

= \(\frac{(3.5 × 10⁻²)}{(7 × 10⁻³)}\)

= \(\frac{3.5}{7} × 10^{-2 - (-3)}\)

= \(0.5 × 10^{-2+3}\)

= \(0.5 × 10¹\)

= \(5 × 10^{1-1}\)

= \(5 × 10⁰\)

(h) (2.7 × 10⁻³) ÷ (3 × 10⁻²)

Solution

(2.7 × 10⁻³) ÷ (3 × 10⁻²)

= \(\frac{(2.7 × 10⁻³)}{(3 × 10⁻²)}\)

= \(\frac{2.7}{3} × 10^{-3 - (-2)}\)

= \(0.9 × 10^{-3+2}\)

= \(0.9 × 10^{-1}\)

= \(9 × 10^{-1 - 1}\)

= \(9 × 10^{-2}\)

(i) (32.08 × 10⁸) ÷ (4.01 × 10⁻³)

Solution

(32.08 × 10⁸) ÷ (4.01 × 10⁻³)

= \(\frac{(32.08 × 10⁸)}{(4.01 × 10⁻³)}\)

= \(\frac{32.08}{4.01} × 10^{8 - (-3)}\)

= \(8 × 10^{8+3}\)

= \(8 × 10^{11}\)

5. Simplify and write the result in scientific notation:

(a) \(\frac{(2.1 × 10³ + 4.9 × 10³)}{(1.5 × 10⁶)}\)

Solution

\(\frac{(2.1 × 10³ + 4.9 × 10³)}{(1.5 × 10⁶)}\)

= \(\frac{10³ (2.1 + 4.9)}{(1.5 × 10⁶)}\)

= \(\frac{10³ × 7}{(1.5 × 10⁶)}\)

= \(\frac{7 × 10³}{1.5 × 10⁶}\)

= \(\frac{7}{1.5} × 10^{3-6}\)

≈ \(4.67 × 10^{-3}\)

(b) \(\frac{(4.4 × 10⁵ + 5.6 × 10⁵)}{(5 × 10⁶)}\)

Solution

\(\frac{(4.4 × 10⁵ + 5.6 × 10⁵)}{(5 × 10⁶)}\)

= \(\frac{10⁵ (4.4 + 5.6)}{(5 × 10⁶)}\)

= \(\frac{10⁵ × 10}{(5 × 10⁶)}\)

= \(\frac{10 × 10⁵}{5 × 10⁶}\)

= \(\frac{10}{5} × 10^{5-6}\)

= \(2 × 10^{-1}\)

= \(0.2\)

= \(2 × 10^{-1}\)

(c) \(\frac{(7.8 × 10⁶ - 1.8 × 10⁶)}{(6 × 10⁵)}\)

Solution

\(\frac{(7.8 × 10⁶ - 1.8 × 10⁶)}{(6 × 10⁵)}\)

= \(\frac{10⁶ (7.8 - 1.8)}{(6 × 10⁵)}\)

= \(\frac{10⁶ × 6}{(6 × 10⁵)}\)

= \(\frac{6 × 10⁶}{6 × 10⁵}\)

= \(\frac{6}{6} × 10^{6-5}\)

= \(1 × 10^{1}\)

= \(10\)

= \(1 × 10^{1}\)

(d) \(\frac{(6.4 × 10⁵ - 1.4 × 10⁵)}{(5 × 10⁴)}\)

Solution

\(\frac{(6.4 × 10⁵ - 1.4 × 10⁵)}{(5 × 10⁴)}\)

= \(\frac{10⁵ (6.4 - 1.4)}{(5 × 10⁴)}\)

= \(\frac{10⁵ × 5}{(5 × 10⁴)}\)

= \(\frac{5 × 10⁵}{5 × 10⁴}\)

= \(\frac{5}{5} × 10^{5-4}\)

= \(1 × 10^{1}\)

= \(10\)

= \(1 × 10^{1}\)

(e) \(\frac{(7.5 × 10⁵ + 4.5 × 10⁵)}{(12 × 10⁴)}\)

Solution

\(\frac{(7.5 × 10⁵ + 4.5 × 10⁵)}{(12 × 10⁴)}\)

= \(\frac{10⁵ (7.5 + 4.5)}{(12 × 10⁴)}\)

= \(\frac{10⁵ × 12}{(12 × 10⁴)}\)

= \(\frac{12 × 10⁵}{12 × 10⁴}\)

= \(\frac{12}{12} × 10^{5-4}\)

= \(1 × 10^{1}\)

= \(10\)

= \(1 × 10^{1}\)

(f) \(\frac{(4.2 × 10⁶) × (4 × 10³)}{(4 × 10⁸)}\)

Solution

\(\frac{(4.2 × 10⁶) × (4 × 10³)}{(4 × 10⁸)}\)

= \(\frac{(4.2 × 4) × (10⁶ × 10³)}{(4 × 10⁸)}\)

= \(\frac{16.8 × 10^{6+3}}{(4 × 10⁸)}\)

= \(\frac{16.8 × 10⁹}{4 × 10⁸}\)

= \(\frac{16.8}{4} × 10^{9-8}\)

= \(4.2 × 10^{1}\)

= \(42\)

= \(4.2 × 10^{1}\)

(g) \(\frac{(2.1 × 10⁶) × (4.0 × 10⁻³)}{(4.2 × 10⁻⁴)}\)

Solution

\(\frac{(2.1 × 10⁶) × (4.0 × 10⁻³)}{(4.2 × 10⁻⁴)}\)

= \(\frac{(2.1 × 4.0) × (10⁶ × 10⁻³)}{(4.2 × 10⁻⁴)}\)

= \(\frac{8.4 × 10^{6-3}}{(4.2 × 10⁻⁴)}\)

= \(\frac{8.4 × 10³}{4.2 × 10⁻⁴}\)

= \(\frac{8.4}{4.2} × 10^{3 - (-4)}\)

= \(2 × 10^{3+4}\)

= \(2 × 10⁷\)

(h) \(\frac{(6.48 × 10⁵)}{(2.4 × 10⁴) × (1.8 × 10⁻²)}\)

Solution

\(\frac{(6.48 × 10⁵)}{(2.4 × 10⁴) × (1.8 × 10⁻²)}\)

= \(\frac{(6.48 × 10⁵)}{(2.4 × 1.8) × (10⁴ × 10⁻²)}\)

= \(\frac{(6.48 × 10⁵)}{(4.32 × 10^{4-2})}\)

= \(\frac{(6.48 × 10⁵)}{(4.32 × 10²)}\)

= \(\frac{6.48}{4.32} × 10^{5-2}\)

= \(1.5 × 10^{3}\)

= \(1500\)

= \(1.5 × 10^{3}\)

(i) \(\frac{(6.2 × 10⁻⁴) × (4 × 10⁵)}{(3.1 × 10⁻³)}\)

Solution

\(\frac{(6.2 × 10⁻⁴) × (4 × 10⁵)}{(3.1 × 10⁻³)}\)

= \(\frac{(6.2 × 4) × (10⁻⁴ × 10⁵)}{(3.1 × 10⁻³)}\)

= \(\frac{24.8 × 10^{-4+5}}{(3.1 × 10⁻³)}\)

= \(\frac{24.8 × 10¹}{(3.1 × 10⁻³)}\)

= \(\frac{24.8}{3.1} × 10^{1 - (-3)}\)

= \(8 × 10^{1+3}\)

= \(8 × 10⁴\)

6. Simplify and write in the usual form:

(a) (3.5 × 10⁴) + (8.7 × 10⁵) - (-2.2 × 10³) + (1.5 × 10³)

Solution:

(3.5 × 10⁴) + (8.7 × 10⁵) - (-2.2 × 10³) + (1.5 × 10³)

= 35,000 + 870,000 + 2,200 + 1,500

= 908,700

(b) (7.5 × 10⁵) - (8.6 × 10⁴) + (2.7 × 10³) + (1.4 × 10⁴)

Solution:

(7.5 × 10⁵) - (8.6 × 10⁴) + (2.7 × 10³) + (1.4 × 10⁴)

= 750,000 - 86,000 + 2,700 + 14,000

= 680,700

7. Simplify and write in usual form:

(a)

\(\frac{(5.5 \times 10^{-4})(6 \times 10^7)}{(3.3 \times 10^{-6})(2 \times 10^4)^2}\)

= \(\frac{33 \times 10^3}{13.2 \times 10^2}\)

= \(2.5 \times 10^1\)

= 25

(b)

\(\frac{(6 \times 10^{-3})(7 \times 10^6)}{(3 \times 10^{-4})(14 \times 10^5)}\)

= \(\frac{42 \times 10^3}{42 \times 10^1}\)

= \(1 \times 10^2\)

= 100

(c)

\(\frac{(15 \times 10^{-3})(2 \times 10^6)}{(5 \times 10^{-4})(15 \times 10^5)}\)

= \(\frac{30 \times 10^3}{75 \times 10^1}\)

= \(0.4 \times 10^2\)

= 40

8. Simplify and express in scientific notation:

(a)

\(\frac{(5 \times 10^{-4})(6 \times 10^7)}{(3 \times 10^{-6})(20 \times 10^{-3})^2}\)

= \(\frac{30 \times 10^3}{1.2 \times 10^{-9}}\)

= \(25 \times 10^{12}\)

= \(2.5 \times 10^{13}\)

(b)

\(\frac{(5 \times 10^6)(4 \times 10^{-7})^2}{(3 \times 10^{-4})(4 \times 10^5)}\)

= \(\frac{80 \times 10^{-8}}{12 \times 10^{-1}}\)

= \(6.\overline{6} \times 10^{-7}\)

= \(6.67 \times 10^{-7}\)

(c)

\(\frac{12,\!000,\!000 \times 0.000003 \times 40,\!000}{0.004 \times 0.003 \times 600,\!000}\)

= \(\frac{(1.2 \times 10^7) \times (3 \times 10^{-6}) \times (4 \times 10^4)}{(4 \times 10^{-3}) \times (3 \times 10^{-3}) \times (6 \times 10^5)}\)

= \(\frac{14.4 \times 10^{5}}{7.2 \times 10^{-1}}\)

= \(2 \times 10^{5-(-1)}\)

= \(2 \times 10^{6}\)

= \(2 \times 10^6\) or 2,000,000

(d)

\(\frac{(6.8 \times 10^5)(3.9 \times 10^{-7})}{7.8 \times 10^{-4}}\)

= \(\frac{26.52 \times 10^{-2}}{7.8 \times 10^{-4}}\)

= \(3.4 \times 10^2\)

(e)

\(\frac{(3.2 \times 10^5)(2.4 \times 10^{-8})}{(6.0 \times 10^{-2})(6.4 \times 10^3)}\)

= \(\frac{7.68 \times 10^{-3}}{3.84 \times 10^2}\)

= \(2 \times 10^{-5}\)

(f)

\(\frac{(3.22 \times 10^3)(4.1 \times 10^{-4})}{(4.07 \times 10^{-5})(0.08 \times 10^4)}\)

= \(\frac{13.202 \times 10^{-1}}{3.256 \times 10^{-2}}\)

= \(4.055 \times 10^1\)

= \(4.06 \times 10^1\)

9. Capacity Problems:

(a) The capacities of two tanks are 4.5 × 10³ liters and 3.5 × 10³ liters. What is the total capacity of both the tanks?

Solution:

Total capacity = (4.5 × 10³) + (3.5 × 10³)

= (4.5 + 3.5) × 10³

= 8.0 × 10³ liters

= 8,000 liters

(b) A water tank can hold 7.5 × 10³ liters of water and another tank can hold 0.5 × 10³ liters of water. What is the sum of the capacities of both water tanks?

Solution:

Total capacity = (7.5 × 10³) + (0.5 × 10³)

= (7.5 + 0.5) × 10³

= 8.0 × 10³ liters

= 8,000 liters

10. Time Calculation Problems:

(a) A rocket has speed 1.6 × 10⁴ km/hour. The distance of the moon from the earth is 3.82 × 10⁶ km. How many hours will it take the rocket to get to the moon?

Solution:

Time= \(\frac{Distance}{Speed}\)

= \(\frac{(3.82 × 10⁶)}{(1.6 × 10⁴)}\)

= \(\frac{(3.82 }{(1.6 × 10⁴)}\)

= (3.82 ÷ 1.6) × 10⁶⁻⁴

= 2.3875 × 10² hours

= 238.75 hours

(b) A rocket travels 5 × 10³ km in one hour. The distance of mars from the earth is 7.8 × 10⁷ km. In how many hours the rocket can reach the mars planet?

Solution:

Time = Distance ÷ Speed

= (7.8 × 10⁷) ÷ (5 × 10³)

= (7.8 ÷ 5) × 10⁷⁻³

= 1.56 × 10⁴ hours

= 15,600 hours

10. Rocket Time Calculation Problems:

(a) A rocket has speed 1.6 × 10⁴ km/hour. The distance of the moon from the earth is 3.82 × 10⁶ km. How many hours will it take the rocket to get to the moon?

Solution:

Time = \(\frac{Distance}{Speed}\)

= \(\frac{3.82 × 10⁶}{1.6 × 10⁴}\) hours

= \(\frac{3.82}{1.6} × 10^{6-4}\) hours

= 2.3875 × 10² hours

= 238.75 hours

(b) A rocket travels 5 × 10³ km/hour. The distance of Mars from the earth is 7.8 × 10⁷ km. In how many hours can the rocket reach Mars?

Solution:

Time = \(\frac{Distance}{Speed}\)

= \(\frac{7.8 × 10⁷}{5 × 10³}\) hours

= \(\frac{7.8}{5} × 10^{7-3}\) hours

= 1.56 × 10⁴ hours

= 15,600 hours

No comments:

Post a Comment

close